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Abstract In most quantitative trait loci (QTL) mapping

studies, phenotypes are assumed to follow normal distribu-

tions. Deviations from this assumption may affect the

accuracy of QTL detection, leading to detection of false

positive QTL. To improve the robustness of QTL mapping

methods, we replace the normal distribution assumption for

residuals in a multiple QTL model with a Student-t distri-

bution that is able to accommodate residual outliers. A

Robust Bayesian mapping strategy is proposed on the basis

of the Bayesian shrinkage analysis for QTL effects. The

simulations show that Robust Bayesian mapping approach

can substantially increase the power of QTL detection when

the normality assumption does not hold and applying it to

data already normally distributed does not influence the

result. The proposed QTL mapping method is applied to

mapping QTL for the traits associated with physics–chem-

ical characters and quality in rice. Similarly to the simulation

study in the real data case the robust approach was able to

detect additional QTLs when compared to the traditional

approach. The program to implement the method is avail-

able on request from the first or the corresponding author.

Introduction

Most quantitative trait loci (QTL) mapping methods such

as least-squares-based, maximum likelihood-based or Ba-

yes-based ones require the common assumption of

normally distributed phenotypes. These approaches are not

appropriate for the analysis of the phenotypes that are

known to violate the normality assumption, because many

desirable properties of the normal distribution cannot be

fully utilized and deviations from normality are likely to

affect the accuracy of QTL detection.

For continuous non-normally distributed traits, a classical

mapping approach is to convert the trait into an approxi-

mately normal variable by applying a mathematical

transformation (Sokal and Rohlf 1995). Box–Cox transfor-

mation, as a general formula, has been therefore used in QTL

mapping analysis (Yang et al. 2006). Diao and Lin (2005)

have plugged the true transformation function completely

unspecified into the variance-components model for robust

mapping QTL in human outbred population. A simple

approach is applying parametric methods, such as the least-

squares-based method that has legendary robustness, to

directly analyze non-normally data. People have used dif-

ferent types of theoretical distributions to simulate non-

normally distributed phenotypes and showed that robustness

of parametric QTL mapping methods to non-normally dis-

tributed phenotypes is difficult to establish (e.g. Jansen 1992;

Rebaı̈ 1997; Hackett 1997; Coppieters et al. 1998). In addi-

tion, the appropriate likelihood function can also be

established on any known non-normal distributions. For
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instance, Jansen (1992) presented a general mixture model

for mapping QTL which uses the distributional properties of

the data by fitting a generalized linear model; the Cox’s

proportional hazards model is an adequate model for map-

ping survival times (e.g. Symons et al. 2002; Diao et al.

2004).The distribution-free nonparametric approach had

commonly been used for locating the loci of non-normal

traits. Kruglyak and Lander (1995) described a nonpara-

metric interval mapping approach based upon the Wilcoxon

rank-sum test applicable to backcross designs, they demon-

strated by the example of an exponential distribution that the

non-parametric test would outperform parametric ones. The

approach has been extended by the Coppieters et al. (1998)

for half-sib pedigrees in outbred populations. Elsen and co-

workers (Elsen et al. 1999; Goffinet et al. 1999; Mangin et al.

1999) presented heteroskedastic models for QTL detection in

livestock populations. Furthermore, rank-based statistical

methodologies have been synoptically proposed for quanti-

tative trait locus mapping (Zou et al. 2003). When the data is

non-normal, assuming that the distributions of the random

effects and of the residuals are Gaussian makes inferences

vulnerable to the presence of outliers (Pinheiro et al. 2001).

Some symmetric and long-tailed distributions, such as the

Student-t distribution (Rogers and Tukey 1972; Dempster

et al. 1980; Lange et al. 1989), have been therefore suggested

for robust estimation. Fernandez and Steel (1998) applied the

method of inverse scaling of the probability density function

on the left and on the right side of the distribution to a sym-

metric heavy-tailed distribution, thereby simultaneously

capturing heavy tails and skewness. Rohr and Hoeschele

(2002) have incorporated the Fernandez and Steel’s approach

into a Bayesian QTL mapping, developing a Robust Bayesian

QTL mapping method, which allows for non-normal, con-

tinuous distributions of phenotypes within QTL genotypes,

via skewed Student-t distributions of residual errors in the

analysis. Additionally, Feenstra and Skovgaard (2004) have

demonstrated that the two- (or more) component model may

fit to the data much better than the single-component model

within the framework of maximum likelihood.

The objective of the study is to develop a robust map-

ping strategy that uses the Student-t distribution to

characterize residual error in multiple QTL model, and to

investigate the robustness of mapping QTL under the

framework of Bayesian shrinkage mapping by a series of

simulations and a real data analysis.

Method

Genetic model

For simplicity, we only consider a backcross population

derived from two inbred line. However, the method can be

applied to other experimental designs, such as recombi-

nation inbred lines, F2 design, and four-way crosses. The

phenotypes and molecular marker data are collected from n

individuals. Assume that there are q quantitative trait loci

responsible for a trait of interest and no interactions

between each others, the phenotypic value yi of individual i

can be then described by the following multiple QTL

model:

yi ¼ lþ
Xq

j¼1

xijbj þ ei ð1Þ

where l is the population mean, bj for j = 1,…, q, is the

additive effect of the jth QTL. Variable xij is a genotype

indicator variable for individual i at locus j and defined as 1

for one genotype and -1 for the other genotype; and ei is a

random environmental error, which is assumed as a heavy-

tailed Student-t distribution to cover much more outliers

caused by non-normal distributed phenotypes.

For convenience to contrast with the normal model, we

factorize ei into
eiffiffiffiffiffi
wi
p ; where ei * N(0, r2) and

wi�Gamma
df

2
;
df

2

� �
; here, the df is the degree of free-

dom of Student-t distribution, which is a measure of the tail

behavior. The smaller the df, the heavier were the tails of

the distribution. Apparently, the normal model is a partic-

ular case of (1), obtained by taking wi = 1, for all i.

Likelihood function

The probability distribution of the phenotype data condi-

tional on all parameters is called the likelihood. According

to model (1), the conditional density of all phenotypes,

given the parameters, is

pðyjl; b; r2;w; xÞ / ðr2Þ�
n
2

Yn

i¼1

wi

 !1=2

� exp � 1

2r2

Xn

i¼1

wi yi � l�
Xq

j¼1

xijbj

 !2
2

4

3

5

where y = {yi}, x = {xij}, b = {bj} and w = {wi} for

i = 1, 2,…, n and j = 1, 2,…, q.

Prior distribution and joint posterior density

For the population mean l, there is a little prior

knowledge about the values. Its prior distribution is

represented by assuming p(l) � constant. Following the

Bayesian shrinkage estimation (Wang et al. 2005), the

prior knowledge about the each QTL regression effect bj

can be imaged as various evaluations from different
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researchers. These results of evaluations are considered

as bj * N(0, rj
2), rj

2 * IC[vb, (vbsb)-1] for j = 1, 2,…,

q, where vb and sb are prior given as hyper-parameters. A

scaled inverse-chi-square distribution with hyper-param-

eters ve and se will be adopted as prior for r2, i.e.,

r2 * IC[ve, (vese)
-1]. As pointed in above genetic

model, the prior distribution of wi, given df, is

Gamma
df

2
;
df

2

� �
: We adopt a flat prior for df, yielding:

p(df) � df-2. The position of jth QTL pðkjÞ ¼
1

dj
; where

dj is the length of the sampling interval where the jth

QTL resides.

The joint posterior density of all unknown parameters is

then:

pðl; b; r2;w; df ; x; kjy;mÞ ¼ pðyjl; b; r2;w; xÞpðwjdf Þpðdf Þ
pðxjk;mÞpðkÞpðlÞpðbjr2

bÞpðr2
bjvb; sbÞpðr2jve; seÞ ð2Þ

where m is the known marker information; k = {kj} and

rb
2 = {rj

2} for j = 1, 2,…, q.

Posterior distribution and MCMC sampling

In order to implement Bayesian estimation via the Markov

Chain Monte Carlo (MCMC), the marginal posterior dis-

tributions of all parameters need to be derived from the

above joint posterior density (2) by fixing other parameters.

The fully conditional posterior density of the population

mean l, given all other parameters, can be shown to be a

normal distribution with mean l̂ ¼ ð
Pn

i¼1 wiÞ�1

Pn
i¼1 wiðyi �

Pq
j¼1 xijbjÞ; and variance r̂2

0 ¼ ð
Pn

i¼1 wiÞ�1

r2: Conditionally, on all other parameters, the QTL effects

are mutually independent. In particular, the density of the

fully conditional posterior distribution of bj is normal

with mean b̂j ¼ ðr2r�2
j þ

Pn
i¼1 wix

2
ijÞ
�1Pn

i¼1 wixijðyi � l�
Pq

k 6¼j xikbkÞ; and variance r̂2
j ¼ ðr2r�2

j þ
Pn

i¼1 wix
2
ijÞ
�1r2;

for j = 1, 2,…, q. The fully conditional posterior distribution

of the variance rj
2 of each QTL effect is a scaled inverse-chi-

square with parameters vb ? 1 and (vb ? 1)sb ? bj
2. For the

residual variance r2, the corresponding fully conditional

distribution is also a scaled inverse-chi-square with parameters

ve ? n and ve þ nð Þse þ
Pn

i¼1 wiðyi � l�
Pq

j¼1 xijbjÞ2:
Note that wi can be interpreted as a ‘‘weight’’ assigned to in

the analysis. For each element of w, the density is:

p wijl; b; r2
j ; r

2; df ; y
� �

/ w
1þdf�2ð Þ=2

i

� exp �wi

2
df þ 1

r2

Xn

i¼1

yi � l�
Xq

j¼1

xijbj

 !2
2
4

3
5

8
<

:

9
=

;;

which corresponds to a Gamma distribution with parameters

1þ df

2
and 2½df þ 1

r2

Xq

i¼1
ðyi � l�

Xq

j¼1
xijbjÞ2��1:

Using the prior for df stated above, the fully conditional

posterior density of df is:

p df jl; b; r2
j ; r

2; y;w
� �

/ 2
df
2 C

df

2

� �� ��n

df
ndf
2
�2

� exp � df

2

Xn

i¼1

wi � ln wið Þ
" #

The distribution does not have a closed form but a

Metropolis–Hastings or rejection sampling step (Ripley

1987) can be embedded in the MCMC scheme to obtain

draws for df.

The conditional posterior distribution of the position of a

QTL also has no explicit form. Therefore, the general

Metropolis–Hastings (Metropolis et al. 1953; Hastings

1970) algorithm is required to sample k. Since the geno-

type of QTL (x) depends on the QTL position (k), we

decide to sample {kj, xj} jointly as a block but proceed with

the sampling with one locus at a time. Each locus is

sampled from a variable interval (Wang et al. 2005; Zhang

and Xu 2005) whose boundaries are the positions of

adjoining QTL. The prior distribution of kj can be written

as

pðkjÞ ¼ U kj; kj�1; kjþ1

� 	
¼ 1= kjþ1 � kj�1

� 	
;

where kj-1 and kj?1 are the positions of the left and the

right QTL. Let kj
(t) be the current position of the locus of

interest and x
tð Þ

j ¼ ½x1j � � � xnj�T be the genotype array of all

individuals at the locus. We first sampled a new position

for the QTL, called the proposed position and denoted by

kj
* = kj ? d, where d is sampled from U(-s, s) and s is a

small positive number (tuning parameter) such as 1 cM.

For the new position, we simulate the genotypes for all

individuals, denoted by xj
*. We then use the M–H rule to

decide whether kj
* should be accepted or not. If kj

* is

accepted, we update both the position and the genotype

using kj
(t?1) = kj

* and xj
(t?1) = xj

*. Otherwise, the old values

of kj and xj are carried over so that kj
(t?1) = kj

(t) and

xj
(t?1) = xj

(t). Detailed formula of the M–H acceptance rule

can be found in Wang et al. (2005) and Zhang and Xu

(2005).

Genotypes of missing markers were generated randomly

in each iteration on the basis of the probability inferred

jointly from the nearest non-missing flanking markers and

the phenotype. The probability from the markers is treated

as the prior probability. After incorporation of the marker

(QTL) effects through the phenotype, the probability

becomes the posterior probability, which is used to gen-

erate the missing marker genotype. See Wang et al. (2005)
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for details. In summary, the MCMC process is described in

the following steps:

(1) Initialize all variables with some legal values or

values sampled from their prior distributions.

(2) Update the population mean l.
(3) Update the genetic effects bj (j = 1, 2,…, q) for

each QTL.

(4) Update the variance rj
2 (j = 1, 2,…, q)of each QTL

effect.

(5) Update the residual variance r2.

(6) Update the degree of freedom df.
(7) Update the ‘‘weight’’ wi (i = 1, 2,…, n).

(8) Update the QTL position kj (j = 1, 2,…, q) and the

genotypes for each QTL.

(9) Impute the genotypes of missing markers.

(10) Repeat steps (2)–(9) until the Markov chain reaches

a desirable length.

Post MCMC analysis

The product of MCMC sampling is a realized sample of all

unknown variables drawn from the joint posterior distri-

bution. In practice those results should be interpreted in a

different way. In conventional Bayesian mapping (e.g.

Sillanpää and Arjas 1998, 1999; Yi and Xu 2000; Wang

et al. 2005), the marginal posterior distribution of QTL

position can be depicted via plotting the number of hits by

QTL in a short segment (say a 1 cM segment), called a bin,

against the genome position where the bin is located. The

curve is called the QTL intensity profile.

In addition to the QTL intensity profile, there is an

alternative profile to present the result of MCMC, which is

the U test statistic profile denoted by U ¼ bðkÞffiffiffiffiffiffiffiffiffiffi
VðkÞ

p (Yang

and Xu 2007), where b(k) is the average effect of QTL for

the bin located at position k and V(k) is the corresponding

sample variance for the QTL effect at position k. U follows

a standard normal distribution. The critical value is 1.96 for

declaring statistical significance at position k at the sig-

nificant level of 0.05. Hereinafter, the U statistics is used to

claim the presence of QTL.

Simulations

We simulate 61 equally spaced codominant markers on a

single large chromosome of length 600 cM for a backcross

population with sample size of 150 and 300. Ten QTL are

put along the genome. The total genetic variance contrib-

uted by all 10 QTL was 45.06, where the proportion of

phenotypic variance contributed by an individual QTL

ranged from 0.40 to 34.0%. The population mean and the

environmental (residual) variance were set at l = 5.0 and

r2 = 2.0.

In all Bayesian estimation, the initial number of QTL

q = 15, that is, each evenly covers 40 cM of the genome,

which is empirically determined according to Bayesian

shrinkage mapping for single trait (Wang et al. 2005). The

actual values for the hyper parameters take vb = 0, ve = 0,

sb = 1 and se = 1. The initial values of all variables are

sampled from their prior distributions. The MCMC is run

for 6,000 cycles as burn-in period (deleted) and then for

additional 60,000 cycles after the burn-in. Note that here

the length of the burn-in is judged by visually inspecting

the plots of some samples across rounds and is set to make

enough cycles for ensuring the MCMC convergence. The

chain is then thinned to reduce serial correlation by saving

one observation in every 40 cycles. The posterior sample

contains 1,500 (60,000/40 = 1,500) observations for the

Table 1 Statistical power of QTL detection (%) obtained with Robust method and Traditional method

Sample size df Method QTL no.

1 2 3 4 5 6 7 8 9 10

150 1 Robust 100 100 70 80 15 70 35 100 30 80

Traditional 100 100 10 35 0 15 5 100 0 25

5 Robust 100 100 95 100 30 95 100 95 40 100

Traditional 100 100 75 45 0 45 50 100 15 75

15 Robust 100 100 100 100 45 95 100 100 55 100

Traditional 100 100 90 100 0 95 95 100 35 100

300 1 Robust 100 100 75 100 25 75 60 100 30 85

Traditional 100 100 15 50 10 25 5.0 100 15 35

5 Robust 100 100 100 100 35 100 95 100 45 100

Traditional 100 100 80 60 20 60 75 100 20 100

15 Robust 100 100 100 100 45 100 100 100 60 100

Traditional 100 100 90 100 40 100 100 100 40 100

df is the degree of freedom given in simulation, which in other Table is the same
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post-MCMC analysis. The simulation experiment is repli-

cated 40 times for statistical power evaluation. QTL

parameters are calculated by averaging posterior estimates

from those simulations in which significant QTL is

detected.

Real data

A 162 F10 recombinant inbred lines (RILs) derived from

the hybrids of Dasanbyeo (a Korean tongil type

rice) 9 TR22183 (a Chinese japonica variety), had been

designed for mapping QTL for traits associated with

physics–chemical characters and quality in rice. On the

basis of the population, the framework linkage map of

1467.5 cM containing 208 SSR and STS markers has been

constructed. This map consists of the 17 largest linkage

groups (LG) for each parental map.

Results

Simulated data

We conducted three simulation experiments to demonstrate

the flexibility of the Robust Bayesian mapping proposed

here. In the first simulation experiment, we sampled

residual error from t distribution with degree of freedom

df = 1, 5 and 15, respectively, generating phenotype val-

ues according to model (1). Those data are analyzed by

adopting Robust Bayesian mapping (Robust method) and

traditional Bayesian mapping as if residual were normally

distributed (Traditional method), respectively. The statis-

tical powers of QTL detection with both methods are given

in Table 1. In general, Robust method can detect more

QTL than Traditional method if the residual error subjects

to heavy-tailed t distribution, especially with lower degree

of freedom. Both the methods are able to accurately esti-

mate positions and effects of QTL detected (see Tables 2

and 3). Estimates of degree of freedom given 1, 5, and 15

are 1.51 ± 0.55, 7.01 ± 2.12 and 17.79 ± 5.46 for sample

150, and 1.21 ± 0.35, 6.12 ± 2.00 and 16.13 ± 4.41 for

sample 300, respectively. As seen, the Robust method can

better fit the non-normal data by accurately estimating the

degree of freedom in Student-t distribution. In the second

simulation experiment, we simulated residual errors with

log-normal distribution. Mapping results from Robust and

Traditional method were listed in Tables 4, 5, and 6,

respectively. Apparently, Robust method is superior to

Traditional method in the terms of either the statistical

powers of QTL detection or estimation of QTL parameters,

although both methods perform a little lower statistical

powers of QTL detection and lower estimation accuracy of

QTL parameters for log-normal simulated data than t dis-

tribution data.

In the final simulation experiment, we demonstrate that

applying the Robust Bayesian analysis for data already

normally distributed will not harm the result. We generate

normally distributed phenotypes by sampling residuals

from normal distribution and analyzed them with both the

Robust method and Traditional method. The simulation

results shows that the Robust method does not harm the

result if the data are already normally distributed (see

Tables 4, 5 and 6). Student-t distribution with 30 degrees

of freedom usually has been treated as the normal distri-

bution. The degree of freedom is 20.6, estimated from

simulated normal data with Robust method. The possible

reason is that the estimation of the degree of freedom is

closely related to the sample size (Jamrozik et al. 2004).

When we additionally simulate a backcross population

with 1,000 individuals, the estimate of the degree of free-

dom is closed to 50 (result not shown).

Real data

We analyzed the data with both the robust method and

traditional method procedure. Using Bayesian analysis, we

assumed a total of 70 QTL across the whole genome. The

initial value of each unknown parameter was taken same as

Table 4 Statistical power of QTL detection (%) for log normal and normal data detected with Robust method and Traditional method

Sample size Data Method QTL no.

1 2 3 4 5 6 7 8 9 10

150 Log Normal Robust 100 100 65 70 10 65 35 85 25 65

Traditional 65 75 5 25 0 10 0 45 0 25

Normal Robust 100 100 100 100 50 100 100 100 65 100

Traditional 100 100 100 100 10 90 100 100 40 95

300 Log Normal Robust 100 100 75 80 15 70 55 90 30 75

Traditional 80 85 10 40 5 20 5 75 5 30

Normal Robust 100 100 100 100 55 100 100 100 85 100

Traditional 100 100 100 100 35 100 100 100 55 100
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in the simulation study. The mapping results from 13 of 21

traits of interest support the robust method. In the follow-

ing, we take breakdown viscosity (BDV) as an example to

compare the mapping results from two kinds of Bayesian

mapping methods. BDV, that is used to describe rice paste

profile characteristic, is an important parameter for the

cooking and eating quality (Bao and Xia 1999).

The U statistic profile for the Robust method and Tra-

ditional method procedure method are depicted in Fig. 1.

Apparently, Robust method is not only able to detect all

QTL detected by the Traditional method procedure, but

also it detected two more QTL than Traditional method

procedure. The comparative results of the position and

genetic effect of QTL detected from both methods were

exhibited in Table 7.

Discussion

On the basis of the Bayesian shrinkage mapping, we

develop a robust mapping strategy for analyzing continu-

ous non-normal quantitative traits, by replacing the normal

distribution for residuals in multiple QTL model with a

Student-t distribution. Compared with Bayesian shrinkage

mapping for normal trait, the robust mapping strategy

additionally has sample ‘‘weight’’ wi with a Gibbs sampler

and the degree of freedom df with a Metropolis–Hastings

algorithm in the MCMC process. However, it does not

significantly increase computing time on solving QTL

parameters. The flexibility of the Robust Bayesian mapping

for either non-normal or normal data demonstrated by the

simulations can compensate for the expense of two addi-

tional sampling. Hence, it is recommendable to apply the

robust mapping strategy to the practice of mapping QTL.

Rohr and Hoeschele (2000) first implemented a Robust

Bayesian method to mapping QTL. Their study is different

from ours in that: (1) their mapping analysis is aimed at

outbred population whereas ours is at line cross; (2) their

proposed method was based on single QTL model whereas

ours is multiple QTL model and (3) they used skewed

Student-t distributions to describe residual phenotypes in

the analysis whereas we adopted a student-t distribution. In

single QTL model, it seems to be reasonable to assume that

residuals follow skewed Student-t distributions, because

the ‘‘skewness’’ may absorb the effects of other QTL on

phenotypes. However, no ‘‘skewness’’ is possible necessary

for multiple QTL model.

When the phenotypes deviate from normality, Student-t

distribution is capable of accommodating much more

abnormal residuals by thick tails, improving the robustness

inference of QTL parameters. Except for the most com-

monly used Student-t distribution, there may be also many

thick-tailed distributions available for Robust Bayesian

mapping of QTL, such as a class of robust distributions,

known as normal/independent (Andrews and Mallows

1974; Lange and Sinsheimer 1993). These distributions

have been used in multivariate linear regression models

(Liu 1996) and linear mixed model (Stranden and Gianola

1999; Rosa et al. 2003, 2004, within a Bayesian frame-

work. It will be easy to apply those distributions to robust

mapping QTL because multiple QTL model is also linear.

a

0

1

2

3

4

Genome Position

U

        1  2            3                       4            5          6           7     8                9  10  11       12      13         14      15  16       17

b

0

1

2

3

4

Genome Position

U

        1  2            3                       4            5          6           7              8                9  10  11       12      13         14      15  16       17

Fig. 1 The U test-statistic

profiles for QTL mapping from

the rice data analysis: a the one

generated by the Robust

method; b the one drawn from

the traditional mapping

analysis. The horizontal
reference lines in the both plot

are the critical value of 1.96 for

the significance test. The

genome consists of 17 linkage

groups that are separated by the

vertical dotted lines. The 17

linkage groups are drawn in

scales proportional to their

lengths. Positions of the markers

are indicated by the ticks on the

horizontal axis

Table 7 Estimated QTL positions and effects obtained from robust

method and traditional method for BDV in Rice

QTL

No.

Robust Traditional

LG-

position

Effect LG-

position

Effect

1 3–45.6 -0.027 (0.014) – –

2 6–52.6 -0.022 (0.011) 6–52.6 -0.017 (0.001)

3 11–32.0 -0.015 (0.007) – –

4 12–5.5 0.031 (0.008) 12–13.0 0.027 (0.012)

5 14–28.7 0.026 (0.009) 14–32.5 0.029 (0.012)

6 17–48.7 -0.041 (0.009) 17–58.7 -0.058 (0.023)
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In addition, the Robust Bayesian mapping strategy pro-

posed here can be further extended to more complex

experimental population, such as multiple line crosses and

outbred population and more complex QTL models

including epistatic effects between QTLs.
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