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Abstract In most quantitative trait loci (QTL) mapping
studies, phenotypes are assumed to follow normal distribu-
tions. Deviations from this assumption may affect the
accuracy of QTL detection, leading to detection of false
positive QTL. To improve the robustness of QTL mapping
methods, we replace the normal distribution assumption for
residuals in a multiple QTL model with a Student-¢ distri-
bution that is able to accommodate residual outliers. A
Robust Bayesian mapping strategy is proposed on the basis
of the Bayesian shrinkage analysis for QTL effects. The
simulations show that Robust Bayesian mapping approach
can substantially increase the power of QTL detection when
the normality assumption does not hold and applying it to
data already normally distributed does not influence the
result. The proposed QTL mapping method is applied to
mapping QTL for the traits associated with physics—chem-
ical characters and quality in rice. Similarly to the simulation
study in the real data case the robust approach was able to
detect additional QTLs when compared to the traditional
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approach. The program to implement the method is avail-
able on request from the first or the corresponding author.

Introduction

Most quantitative trait loci (QTL) mapping methods such
as least-squares-based, maximum likelihood-based or Ba-
yes-based ones require the common assumption of
normally distributed phenotypes. These approaches are not
appropriate for the analysis of the phenotypes that are
known to violate the normality assumption, because many
desirable properties of the normal distribution cannot be
fully utilized and deviations from normality are likely to
affect the accuracy of QTL detection.

For continuous non-normally distributed traits, a classical
mapping approach is to convert the trait into an approxi-
mately normal variable by applying a mathematical
transformation (Sokal and Rohlf 1995). Box—Cox transfor-
mation, as a general formula, has been therefore used in QTL
mapping analysis (Yang et al. 2006). Diao and Lin (2005)
have plugged the true transformation function completely
unspecified into the variance-components model for robust
mapping QTL in human outbred population. A simple
approach is applying parametric methods, such as the least-
squares-based method that has legendary robustness, to
directly analyze non-normally data. People have used dif-
ferent types of theoretical distributions to simulate non-
normally distributed phenotypes and showed that robustness
of parametric QTL mapping methods to non-normally dis-
tributed phenotypes is difficult to establish (e.g. Jansen 1992;
Rebai 1997; Hackett 1997; Coppieters et al. 1998). In addi-
tion, the appropriate likelihood function can also be
established on any known non-normal distributions. For
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instance, Jansen (1992) presented a general mixture model
for mapping QTL which uses the distributional properties of
the data by fitting a generalized linear model; the Cox’s
proportional hazards model is an adequate model for map-
ping survival times (e.g. Symons et al. 2002; Diao et al.
2004).The distribution-free nonparametric approach had
commonly been used for locating the loci of non-normal
traits. Kruglyak and Lander (1995) described a nonpara-
metric interval mapping approach based upon the Wilcoxon
rank-sum test applicable to backcross designs, they demon-
strated by the example of an exponential distribution that the
non-parametric test would outperform parametric ones. The
approach has been extended by the Coppieters et al. (1998)
for half-sib pedigrees in outbred populations. Elsen and co-
workers (Elsen et al. 1999; Goffinet et al. 1999; Mangin et al.
1999) presented heteroskedastic models for QTL detection in
livestock populations. Furthermore, rank-based statistical
methodologies have been synoptically proposed for quanti-
tative trait locus mapping (Zou et al. 2003). When the data is
non-normal, assuming that the distributions of the random
effects and of the residuals are Gaussian makes inferences
vulnerable to the presence of outliers (Pinheiro et al. 2001).
Some symmetric and long-tailed distributions, such as the
Student-¢ distribution (Rogers and Tukey 1972; Dempster
etal. 1980; Lange et al. 1989), have been therefore suggested
for robust estimation. Fernandez and Steel (1998) applied the
method of inverse scaling of the probability density function
on the left and on the right side of the distribution to a sym-
metric heavy-tailed distribution, thereby simultaneously
capturing heavy tails and skewness. Rohr and Hoeschele
(2002) have incorporated the Fernandez and Steel’s approach
into a Bayesian QTL mapping, developing a Robust Bayesian
QTL mapping method, which allows for non-normal, con-
tinuous distributions of phenotypes within QTL genotypes,
via skewed Student-¢ distributions of residual errors in the
analysis. Additionally, Feenstra and Skovgaard (2004) have
demonstrated that the two- (or more) component model may
fit to the data much better than the single-component model
within the framework of maximum likelihood.

The objective of the study is to develop a robust map-
ping strategy that uses the Student-r distribution to
characterize residual error in multiple QTL model, and to
investigate the robustness of mapping QTL under the
framework of Bayesian shrinkage mapping by a series of
simulations and a real data analysis.

Method
Genetic model

For simplicity, we only consider a backcross population
derived from two inbred line. However, the method can be
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applied to other experimental designs, such as recombi-
nation inbred lines, F, design, and four-way crosses. The
phenotypes and molecular marker data are collected from n
individuals. Assume that there are ¢ quantitative trait loci
responsible for a trait of interest and no interactions
between each others, the phenotypic value y; of individual i
can be then described by the following multiple QTL
model:

q
Yi:M+injbj+8i (1)

j=1

where p is the population mean, b; for j = 1,..., g, is the
additive effect of the jth QTL. Variable x;; is a genotype
indicator variable for individual i at locus j and defined as 1
for one genotype and —1 for the other genotype; and ¢; is a
random environmental error, which is assumed as a heavy-
tailed Student-¢ distribution to cover much more outliers
caused by non-normal distributed phenotypes.

For convenience to contrast with the normal model, we

e; ~ NO, ¢°) and

. . €
factorize ¢ into ,  where

wi
df d
Ef%) here, the df is the degree of free-
dom of Student-z distribution, which is a measure of the tail
behavior. The smaller the df, the heavier were the tails of
the distribution. Apparently, the normal model is a partic-
ular case of (1), obtained by taking w; = 1, for all i.

w; ~ Gamma (

Likelihood function

The probability distribution of the phenotype data condi-
tional on all parameters is called the likelihood. According
to model (1), the conditional density of all phenotypes,
given the parameters, is

" 1/2
PO, b, 0% w,x) o (6%) 2 (H w,~>
i=1

2
1 < !
X exp —ﬁZwi <yi —u— injb])
i=1 =1

where y = {y;}, x = {x;}, b = {b;} and w = {w;} for
i=1,2,..,nandj=1,2,...,q.

Prior distribution and joint posterior density

For the population mean p, there is a little prior
knowledge about the values. Its prior distribution is
represented by assuming p(u) o< constant. Following the
Bayesian shrinkage estimation (Wang et al. 2005), the
prior knowledge about the each QTL regression effect b;
can be imaged as various evaluations from different



Theor Appl Genet (2009) 118:609-617

611

researchers. These results of evaluations are considered
as b, ~ N(0, a7), a7 ~ ICl[vy, (vps;)"'] for j =1, 2,...,
q, where v, and s, are prior given as hyper-parameters. A
scaled inverse-chi-square distribution with hyper-param-
eters v, and s, will be adopted as prior for 02, ie.,
2~ IClv,, (vos)7 1. As pointed in above genetic
model, the prior distribution of w; given df, is

Gamma( ; 2f> We adopt a flat prior for df, yielding:

1
—, where
J
d; is the length of the sampling interval where the jth
QTL resides.

The joint posterior density of all unknown parameters is
then:

p(u, b, 6, w,df . x, Aly,m) = p(y|p, b, >, w,x)p(w|df )p(df)
p(x|A, m)p(A)p(w)p(blay)p(o|ve, s)p(0*vesse)  (2)

where m is the known marker information; /4 = {4;} and
ai = {ajZ} forj=1,2,...,q

p(df) o df % The position of jth QTL p(%;) =

Posterior distribution and MCMC sampling

In order to implement Bayesian estimation via the Markov
Chain Monte Carlo (MCMC), the marginal posterior dis-
tributions of all parameters need to be derived from the
above joint posterior density (2) by fixing other parameters.

The fully conditional posterior density of the population
mean u, given all other parameters, can be shown to be a

C . . -1
normal distribution with mean = (3L, w;)

S wilyi = 2o xiby), and variance a5 = (301, wi) !
a2, Conditionally, on all other parameters, the QTL effects

are mutually independent. In particular, the density of the
fully conditional posterior distribution of b; is normal
(0 _2 +2o 1WX,,) 'y Wiy (vi — p—
Soi L xiby), and variance &7 = (0a; > + Y0 wixg) o2,
forj = 1,2,...,q. The fully cond1t10na1 posterior distribution
of the variance Gf of each QTL effect is a scaled inverse-chi-
square with parameters vy + land (v, + 1)s, + b For the
residual variance ¢, the corresponding fully condmonal
distribution is also a scaled inverse-chi-square with parameters
(ve +m)se + Dy wilyi — =31, xijbj)z.
Note that w; can be interpreted as a “weight” assigned to in
the analysis. For each element of w, the density is:

p(wili b, a3, 0%, df,y) o w02

2
Wi 1 1 g

X expy — > df—}-;Z(yi—u—Zx,-jbj) ,
i=1 =1

with mean 5,-

Ve +n and

which corresponds to a Gamma distribution with parameters

1+ df J— g -
—— and 2[df+?zi:l i —p=D 0 %)l

Using the prior for df stated above, the fully conditional
posterior density of df is:

p(dfli b, a3, 0%y w) o [M(dfﬂ ot

xexpl——z lnw,]

The distribution does not have a closed form but a
Metropolis—Hastings or rejection sampling step (Ripley
1987) can be embedded in the MCMC scheme to obtain
draws for df.

The conditional posterior distribution of the position of a
QTL also has no explicit form. Therefore, the general
Metropolis—Hastings (Metropolis et al. 1953; Hastings
1970) algorithm is required to sample A. Since the geno-
type of QTL (x) depends on the QTL position (1), we
decide to sample {4;, x;} jointly as a block but proceed with
the sampling with one locus at a time. Each locus is
sampled from a variable interval (Wang et al. 2005; Zhang
and Xu 2005) whose boundaries are the positions of
adjoining QTL. The prior distribution of 4; can be written
as

p(%g) = U4 2=, 2e1) = 1/ (Zger = 2-1)),

where 4;_; and /;y, are the positions of the left and the
right QTL. Let )LJ(-’) be the current position of the locus of
interest and xj(»') =[xy - -x,,j]T be the genotype array of all
individuals at the locus. We first sampled a new position
for the QTL, called the proposed position and denoted by
)L;F = J; + 0, where 0 is sampled from U(—s, s) and s is a
small positive number (tuning parameter) such as 1 cM.
For the new position, we simulate the genotypes for all
individuals, denoted by x;. We then use the M—H rule to
decide whether i; should be accepted or not. If /1; is
accepted, we update both the position and the genotype
using 2D = 27 and x{""" = x;. Otherwise, the old values
of J; and x; are carried over so that A{"" = and

(’“) ) Detalled formula of the M—H acceptance rule
can be found in Wang et al. (2005) and Zhang and Xu
(2005).

Genotypes of missing markers were generated randomly
in each iteration on the basis of the probability inferred
jointly from the nearest non-missing flanking markers and
the phenotype. The probability from the markers is treated
as the prior probability. After incorporation of the marker
(QTL) effects through the phenotype, the probability
becomes the posterior probability, which is used to gen-
erate the missing marker genotype. See Wang et al. (2005)
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for details. In summary, the MCMC process is described in
the following steps:

(1) [Initialize all variables with some legal values or
values sampled from their prior distributions.

(2) Update the population mean .

(3) Update the genetic effects b; (j =1, 2,..., q) for
each QTL.

(4) Update the variance ajz G=1,2,..., gof each QTL
effect.

(5) Update the residual variance o>

(6) Update the degree of freedom df.

(7) Update the “weight” w; (i = 1, 2,..., n).

(8) Update the QTL position 4; (j = 1, 2,..., ¢) and the
genotypes for each QTL.

(9) Impute the genotypes of missing markers.

(10) Repeat steps (2)—(9) until the Markov chain reaches

a desirable length.

Post MCMC analysis

The product of MCMC sampling is a realized sample of all
unknown variables drawn from the joint posterior distri-
bution. In practice those results should be interpreted in a
different way. In conventional Bayesian mapping (e.g.
Sillanpdd and Arjas 1998, 1999; Yi and Xu 2000; Wang
et al. 2005), the marginal posterior distribution of QTL
position can be depicted via plotting the number of hits by
QTL in a short segment (say a 1 cM segment), called a bin,
against the genome position where the bin is located. The
curve is called the QTL intensity profile.

In addition to the QTL intensity profile, there is an
alternative profile to present the result of MCMC, which is

and Xu 2007), where b(4) is the average effect of QTL for
the bin located at position A and V(1) is the corresponding
sample variance for the QTL effect at position A. U follows
a standard normal distribution. The critical value is 1.96 for
declaring statistical significance at position A at the sig-
nificant level of 0.05. Hereinafter, the U statistics is used to
claim the presence of QTL.

Simulations

We simulate 61 equally spaced codominant markers on a
single large chromosome of length 600 cM for a backcross
population with sample size of 150 and 300. Ten QTL are
put along the genome. The total genetic variance contrib-
uted by all 10 QTL was 45.06, where the proportion of
phenotypic variance contributed by an individual QTL
ranged from 0.40 to 34.0%. The population mean and the
environmental (residual) variance were set at ¢ = 5.0 and
o = 2.0.

In all Bayesian estimation, the initial number of QTL
q = 15, that is, each evenly covers 40 cM of the genome,
which is empirically determined according to Bayesian
shrinkage mapping for single trait (Wang et al. 2005). The
actual values for the hyper parameters take v, = 0, v, = 0,
sp, = 1 and s, = 1. The initial values of all variables are
sampled from their prior distributions. The MCMC is run
for 6,000 cycles as burn-in period (deleted) and then for
additional 60,000 cycles after the burn-in. Note that here
the length of the burn-in is judged by visually inspecting
the plots of some samples across rounds and is set to make
enough cycles for ensuring the MCMC convergence. The
chain is then thinned to reduce serial correlation by saving
one observation in every 40 cycles. The posterior sample

the U test statistic profile denoted by U — — ) (yang  contains 1,500 (60.000/40 = 1,500) observations for the
V(4)
Table 1 Statistical power of QTL detection (%) obtained with Robust method and Traditional method
Sample size df Method QTL no.
1 2 3 4 5 6 7 8 9 10
150 1 Robust 100 100 70 80 15 70 35 100 30 80
Traditional 100 100 10 35 0 15 5 100 0 25
5 Robust 100 100 95 100 30 95 100 95 40 100
Traditional 100 100 75 45 0 45 50 100 15 75
15 Robust 100 100 100 100 45 95 100 100 55 100
Traditional 100 100 90 100 0 95 95 100 35 100
300 1 Robust 100 100 75 100 25 75 60 100 30 85
Traditional 100 100 15 50 10 25 5.0 100 15 35
5 Robust 100 100 100 100 35 100 95 100 45 100
Traditional 100 100 80 60 20 60 75 100 20 100
15 Robust 100 100 100 100 45 100 100 100 60 100
Traditional 100 100 90 100 40 100 100 100 40 100

df is the degree of freedom given in simulation, which in other Table is the same
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Table 4 Statistical power of QTL detection (%) for log normal and normal data detected with Robust method and Traditional method

Sample size Data Method QTL no.
1 2 3 4 5 6 7 8 9 10
150 Log Normal Robust 100 100 65 70 10 65 35 85 25 65
Traditional 65 75 5 25 0 10 0 45 0 25
Normal Robust 100 100 100 100 50 100 100 100 65 100
Traditional 100 100 100 100 10 90 100 100 40 95
300 Log Normal Robust 100 100 75 80 15 70 55 90 30 75
Traditional 80 85 10 40 5 20 5 75 5 30
Normal Robust 100 100 100 100 55 100 100 100 85 100

Traditional 100 100

100 100 35 100 100 100 55 100

post-MCMC analysis. The simulation experiment is repli-
cated 40 times for statistical power evaluation. QTL
parameters are calculated by averaging posterior estimates
from those simulations in which significant QTL is
detected.

Real data

A 162 F), recombinant inbred lines (RILs) derived from
the hybrids of Dasanbyeo (a Korean tongil type
rice) x TR22183 (a Chinese japonica variety), had been
designed for mapping QTL for traits associated with
physics—chemical characters and quality in rice. On the
basis of the population, the framework linkage map of
1467.5 cM containing 208 SSR and STS markers has been
constructed. This map consists of the 17 largest linkage
groups (LG) for each parental map.

Results
Simulated data

We conducted three simulation experiments to demonstrate
the flexibility of the Robust Bayesian mapping proposed
here. In the first simulation experiment, we sampled
residual error from ¢ distribution with degree of freedom
df = 1, 5 and 15, respectively, generating phenotype val-
ues according to model (1). Those data are analyzed by
adopting Robust Bayesian mapping (Robust method) and
traditional Bayesian mapping as if residual were normally
distributed (Traditional method), respectively. The statis-
tical powers of QTL detection with both methods are given
in Table 1. In general, Robust method can detect more
QTL than Traditional method if the residual error subjects
to heavy-tailed 7 distribution, especially with lower degree
of freedom. Both the methods are able to accurately esti-
mate positions and effects of QTL detected (see Tables 2
and 3). Estimates of degree of freedom given 1, 5, and 15

@ Springer

are 1.51 £ 0.55, 7.01 £ 2.12 and 17.79 £ 5.46 for sample
150, and 1.21 &+ 0.35, 6.12 £ 2.00 and 16.13 & 4.41 for
sample 300, respectively. As seen, the Robust method can
better fit the non-normal data by accurately estimating the
degree of freedom in Student-¢ distribution. In the second
simulation experiment, we simulated residual errors with
log-normal distribution. Mapping results from Robust and
Traditional method were listed in Tables 4, 5, and 6,
respectively. Apparently, Robust method is superior to
Traditional method in the terms of either the statistical
powers of QTL detection or estimation of QTL parameters,
although both methods perform a little lower statistical
powers of QTL detection and lower estimation accuracy of
QTL parameters for log-normal simulated data than ¢ dis-
tribution data.

In the final simulation experiment, we demonstrate that
applying the Robust Bayesian analysis for data already
normally distributed will not harm the result. We generate
normally distributed phenotypes by sampling residuals
from normal distribution and analyzed them with both the
Robust method and Traditional method. The simulation
results shows that the Robust method does not harm the
result if the data are already normally distributed (see
Tables 4, 5 and 6). Student-7 distribution with 30 degrees
of freedom usually has been treated as the normal distri-
bution. The degree of freedom is 20.6, estimated from
simulated normal data with Robust method. The possible
reason is that the estimation of the degree of freedom is
closely related to the sample size (Jamrozik et al. 2004).
When we additionally simulate a backcross population
with 1,000 individuals, the estimate of the degree of free-
dom is closed to 50 (result not shown).

Real data

We analyzed the data with both the robust method and
traditional method procedure. Using Bayesian analysis, we
assumed a total of 70 QTL across the whole genome. The
initial value of each unknown parameter was taken same as
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Fig. 1 The U test-statistic a
profiles for QTL mapping from 4

the rice data analysis: a the one 3t
generated by the Robust .
method; b the one drawn from 22

the traditional mapping 9 ﬂ J\A\ ﬂ ”A ﬂ
analySlS' The h()riz()nlal 1 I Inan i li 1 l{\l lm[h Ll :UJHHH
3 4

reference lines in the both plot 12

mum\\ I )\LAHHE JIIAJIIIMHE RN M\A 1 “ﬂn 1A1fum{lmuiﬂ1m T iﬁnm“ I
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Genome Position

0
are the critical value of 1.96 for
the significance test. The b 4
genome consists of 17 linkage .
groups that are separated by the 37 i

vertical dotted lines. The 17

linkage groups are drawn in
scales proportional to their
lengths. Positions of the markers
are indicated by the ficks on the
horizontal axis

in the simulation study. The mapping results from 13 of 21
traits of interest support the robust method. In the follow-
ing, we take breakdown viscosity (BDV) as an example to
compare the mapping results from two kinds of Bayesian
mapping methods. BDV, that is used to describe rice paste
profile characteristic, is an important parameter for the
cooking and eating quality (Bao and Xia 1999).

The U statistic profile for the Robust method and Tra-
ditional method procedure method are depicted in Fig. 1.
Apparently, Robust method is not only able to detect all
QTL detected by the Traditional method procedure, but
also it detected two more QTL than Traditional method
procedure. The comparative results of the position and
genetic effect of QTL detected from both methods were
exhibited in Table 7.

Discussion

On the basis of the Bayesian shrinkage mapping, we
develop a robust mapping strategy for analyzing continu-
ous non-normal quantitative traits, by replacing the normal
distribution for residuals in multiple QTL model with a
Student-¢ distribution. Compared with Bayesian shrinkage
mapping for normal trait, the robust mapping strategy
additionally has sample “weight” w; with a Gibbs sampler
and the degree of freedom df with a Metropolis—Hastings
algorithm in the MCMC process. However, it does not
significantly increase computing time on solving QTL
parameters. The flexibility of the Robust Bayesian mapping
for either non-normal or normal data demonstrated by the
simulations can compensate for the expense of two addi-
tional sampling. Hence, it is recommendable to apply the
robust mapping strategy to the practice of mapping QTL.

Rohr and Hoeschele (2000) first implemented a Robust
Bayesian method to mapping QTL. Their study is different
from ours in that: (1) their mapping analysis is aimed at

@ Springer
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Table 7 Estimated QTL positions and effects obtained from robust
method and traditional method for BDV in Rice

QTL  Robust Traditional
No.

Lo Effect LG- Effect

position position

1 3-45.6  —0.027 (0.014) - -
2 6-52.6  —0.022 (0.011) 6-52.6  —0.017 (0.001)
3 11-32.0  —0.015 (0.007) - -
4 12-5.5 0.031 (0.008) 12-13.0 0.027 (0.012)
5 14-28.7 0.026 (0.009) 14-32.5 0.029 (0.012)
6 17-48.7  —0.041 (0.009) 17-58.7  —0.058 (0.023)

outbred population whereas ours is at line cross; (2) their
proposed method was based on single QTL model whereas
ours is multiple QTL model and (3) they used skewed
Student-# distributions to describe residual phenotypes in
the analysis whereas we adopted a student-7 distribution. In
single QTL model, it seems to be reasonable to assume that
residuals follow skewed Student-z distributions, because
the “skewness” may absorb the effects of other QTL on
phenotypes. However, no “skewness” is possible necessary
for multiple QTL model.

When the phenotypes deviate from normality, Student-¢
distribution is capable of accommodating much more
abnormal residuals by thick tails, improving the robustness
inference of QTL parameters. Except for the most com-
monly used Student-¢ distribution, there may be also many
thick-tailed distributions available for Robust Bayesian
mapping of QTL, such as a class of robust distributions,
known as normal/independent (Andrews and Mallows
1974; Lange and Sinsheimer 1993). These distributions
have been used in multivariate linear regression models
(Liu 1996) and linear mixed model (Stranden and Gianola
1999; Rosa et al. 2003, 2004, within a Bayesian frame-
work. It will be easy to apply those distributions to robust
mapping QTL because multiple QTL model is also linear.
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In addition, the Robust Bayesian mapping strategy pro-
posed here can be further extended to more complex
experimental population, such as multiple line crosses and
outbred population and more complex QTL models
including epistatic effects between QTLs.

Acknowledgments The research was supported by the Chinese
National Natural Science Foundation Grant 30471236 to RY.

References

Andrews DF, Mallows CL (1974) Scale mixtures of normal
distributions. J Roy Stat Soc Ser B 36:99-102

Bao JS, Xia YW (1999) Genetic control of the paste viscosity
characteristics in indica rice (Oryza sativa L.). Theor Appl Genet
98:1120-1124

Coppieters W, Kvasz A, Farnir F, Arranz JJ, Grisart B, Mackinnon M,
Georges M (1998) A rank-based nonparametric method for
mapping quantitative trait loci in outbred half-sib pedigrees:
application to milk production in a granddaughter design.
Genetics 149:1547-1555

Dempster AP, Laird NM, Rubin DB (1980) Iteratively reweighted
least squares for linear regression when errors are normal/
independent distributed. In: Krishnaiah PR (ed) Multivariate
analysis. North-Holland, Amsterdam

Diao G, Lin DY (2005) A powerful and robust method for mapping
quantitative trait loci in general pedigrees. Am J Hum Genet
77:97-111

Diao G, Lin DY, Zou F (2004) Mapping quantitative trait loci with
censored observations. Genetics 168:1689—1698

Elsen JM, Mangin B, Goffinet B, Boichard D, Le RP (1999)
Alternative models for QTL detection in livestock I. General
introduction. Genet Sel Evol 31:213-224

Feenstra B, Skovgaard IM (2004) A quantitative trait locus mixture
model that avoids spurious LOD score peaks. Genetics 167:959—
965

Fernandez C, Steel M (1998) On Bayesian modeling of fat tails and
skewness. J] Am Statist Assoc 93:359-371

Goffinet B, Le RP, Boichard D, Elsen JM, Mangin B (1999)
Alternative models for QTL detection in livestock III. Heteros-
kedastic model and models corresponding to several
distributions of the QTL effect. Genet Sel Evol 31:341-350

Hackett CA (1997) Model diagnostics for fitting QTL models to trait
and marker data by interval mapping. Heredity 79:319-328

Hastings WK (1970) Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57:97-109

Jamrozik J, Stranden I, Schaeffer LR (2004) Random regression test-
day models with residuals following a Student’s-¢ distribution.
J Dairy Sci 87:699-705

Jansen RC (1992) A general mixture model for mapping quantitative
trait loci by using molecular markers. Theor Appl Genet 85:252—
260

Kruglyak L, Lander ES (1995) A nonparametric approach for
mapping quantitative trait loci. Genetics 139:1421-1428

Lange K, Sinsheimer JS (1993) Normal/independent distributions and
their applications in robust regression. J Am Stat Assoc 2:175—
198

Lange KL, Little RJA, Taylor JMG (1989) Robust statistical
modelling using the r-distribution. J Am Stat Assoc 84:881-896

Liu C (1996) Robust Bayesian multivariate linear regression with
incomplete data. J Am Stat Assoc 435:1219-1227

Mangin B, Goffinet B, Le RP, Boichard D, Elsen IM (1999)
Alternative models for QTL detection in livestock II. Likelihood
approximations and sire marker genotype estimation. Genet Sel
Evol 31:225-237

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E
(1953) Equations of state calculations by fast computing
machines. J] Chem Phys 21:1087-1091

Pinheiro JC, Liu CH, Wu YN (2001) Efficient algorithms for robust
estimation in linear mixed-effects models using the multivariate ¢
distribution. J Comput Graph Stat 10:249-276

Rebai A (1997) Comparison of methods for regression interval
mapping in QTL analysis with non-normal traits. Genet Res
69:69-74

Ripley B (1987) Stochastic simulation. Wiley, New York

Rogers WH, Tukey JW (1972) Understanding some long-tailed
distributions. Stat Neerl 26:211-226

Rohr PV, Hoeschele 1 (2002) Bayesian QTL mapping using skewed
Student-¢ distributions. Genet Sel Evol 34:1-21

Rosa GJM, Gianola D, Padovani CR (2004) Bayesian longitudinal
data analysis with mixed models and thick-tailed distributions
using MCMC. J Appl Stat 7:855-873

Rosa GJM, Padovani CR, Gianola D (2003) Robust linear mixed
models with normal/independent distributions and Bayesian
MCMC implementation. Biom J 5:573-590

Sillanpdd MJ, Arjas E (1998) Bayesian mapping of multiple
quantitative trait loci from incomplete inbred line cross data.
Genetics 148:1373-1388

Sillanpdd MJ, Arjas E (1999) Bayesian mapping of multiple
quantitative trait loci from incomplete outbred offspring data.
Genetics 151:1605-1619

Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of
statistics in biological research. W.H. Freeman, New York

Stranden I, Gianola D (1999) Mixed effects linear models with 7-
distributions for quantitative genetic analysis: a Bayesian
approach. Genet Sel Evol 31:25-42

Symons RC, Daly MJ, Fridlyand J, Speed TP, Cook WD, Gerondakis
S, Harris AW, Foote SJ (2002) Multiple genetic loci modify
susceptibility to plasmacytoma-related morbidity in Ep-v-abl
transgenic mice. Proc Natl Acad Sci 99:11299-11304

Wang H, Zhang YM, Li X, Masinde GL, Mohan S, Baylink DJ, Xu S
(2005) Bayesian shrinkage estimation of quantitative trait loci
parameters. Genetics 170:465-480

Yang R, Xu S (2007) Bayesian shrinkage analysis of quantitative trait
loci for dynamic traits. Genetics 176:1169-1185

Yang R, Yi N, Xu S (2006) Box—Cox transformation for QTL
mapping. Genetica 128:133-143

Yi N, Xu S (2000) Bayesian mapping of quantitative trait loci for
complex binary traits. Genetics 155:1391-1403

Zhang YM, Xu S (2005) Advanced statistical methods for detecting
multiple quantitative trait loci. Recent Res Devel Genet Breed
2:1-23

Zou F, Yandell BS, Fine JP (2003) Rank-based statistical method-
ologies for quantitative trait locus mapping. Genetics 165:1599—
1605

@ Springer



	Robust Bayesian mapping of quantitative trait loci�using Student-t distribution for residual
	Abstract
	Introduction
	Method
	Genetic model
	Likelihood function
	Prior distribution and joint posterior density
	Posterior distribution and MCMC sampling
	Post MCMC analysis
	Simulations
	Real data

	Results
	Simulated data
	Real data

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


